We investigated the microbial conversion of CO2 into CH4 in depleted oil reservoirs by the interaction between indigenous oil-degrading hydrogen-producing bacteria and indigenous hydrogenotrophic methanogens that have been found in oil reservoirs universally. In this study, we investigated the influence of crude oil, yeast extract, bicarbonate and CO2 on the growth and gas production of those bacteria through the incubation experiments of isolated strains under reservoir conditions. The yeast extract was estimated to be the most influential factor on the growth and gas production of oil-degrading hydrogen-producing bacteria. Methanogen was unaffected by the crude oil, the yeast extract and bicarbonate, however, both CO2 and H2 are assumed to be the influential factors on it because they are the energy sources of methanogen.

In addition, we also investigated their growth kinetics that were needed to construct a numerical simulator of the microbial conversion of CO2 into CH4 in depleted oil reservoirs. The specific growth rate of oil-degrading hydrogen-producing bacteria was increased as the yeast extract concentration increased while that of the methanogen was constant regardless of the yeast extract concentration. These results indicate that the growth of methanogens is unaffected by the yeast extract that is injected into reservoirs to stimulate the growth of ODHPB. The growth yield of HYH-8 and HYH-10 was 5.5×1010 cells/g-(yeast extract) and 3.5×1011 cells/g-(yeast extract) respectively.

You can access this article if you purchase or spend a download.