Stuck pipe incidents remain as one of the major problems in the drilling industry. The incidents will lead to expensive loss time in daily spread cost, bottom hole assembly cost, sidetracking cost as well as fishing cost. The Wells Augmented Stuck Pipe (WASP) Indicator, a state-of-the-art machine learning technology that seamlessly integrates with PETRONAS existing technologies, is introduced as the stuck pipe prevention detection system for the company. Historical real-time drilling data and stuck pipe incidents reports between 2007 and 2019 are used for the development of machine learning models. The models utilize key drilling parameters such as hookload and equivalent circulating density (ECD) to predict and analyze trends to detect any signature pattern anomalies for various stuck pipe events. The prediction and alarm are displayed in real-time monitoring software to trigger the operation team for prompt intervention. The WASP solution has demonstrated proven outcomes using historical and live well with high confidence in detecting stuck pipe incidents due to differential sticking, hole cleaning, and wellbore geometry. The WASP Indicator is envisaged to provide the company with cutting edge advantages in the industry. It is expected that the system will reduce the identification period and improve the reaction time of the monitoring specialists in recognizing the stuck pipe symptoms and highlighting potential incidents. The system is also bringing value to the company via non-productive time (NPT) cost avoidance and identification of early onset of various stuck pipe events based on distinct mechanisms. With the system, the existing portfolio value can be enhanced via setting dynamic trends and models into historical experiences context. The WASP Indicator is aspired to be the forefront innovation that will leap through the norm and lead the region in a greater plan of drilling automation system.

You can access this article if you purchase or spend a download.