Cementing is one of the sequences in the drilling operations to isolate different geological zones and provide integrity for the life of the well. As compared with oil and gas wells, geothermal wells have unique challenges for cementing operations. Robust cementing design and appropriate best practices during the cementing operations are needed to achieve cementing objectives in geothermal wells.

Primary cementing in geothermal wells generally relies on a few conventional methods: long string, liner-tieback, and two-stage methods. Each has challenges for primary cementing that will be analyzed, compared, and discussed in detail.

Geothermal wells pose challenges of low fracture gradients and massive lost circulation due to numerous fractures, which often lead to a need for remedial cementing jobs such as squeeze cementing and lost circulation plugs. Special considerations for remedial cementing in geothermal wells are also discussed here.

Primary cement design is critical to ensure long-term integrity of a geothermal well. The cement sheath must be able to withstand pressure and temperature cycles when steam is produced and resist corrosive reservoir fluids due to the presence of H2S and CO2. Any fluid trapped within the casing-casing annulus poses a risk of casing collapse due to expansion under high temperatures encountered during the production phase. With the high heating rate of the geothermal well, temperature prediction plays an important part in cement design. Free fluid sensitivity test and centralizer selection also play an important role in avoiding mud channeling as well as preventing the development of fluid pockets. Analysis and comparison of every method is described in detail to enable readers to choose the best approach.

Massive lost circulation is very common in surface and intermediate sections of geothermal wells. On numerous occasions, treatment with conventional lost-circulation material (LCM) was unable to cure the losses, resulting in the placement of multiple cement plugs. An improved lost circulation plug design and execution method are introduced to control massive losses in a geothermal environment. In addition, the paper will present operational best practices and lessons learned from the authors’ experience with cementing in geothermal wells in Indonesia.

Geothermal wells can be constructed in different ways by different operators. In light of this, an analysis of different cementing approaches has been conducted to ensure robust cement design and a fit-for-purpose cementing method. This paper will discuss the cementing design, equipment, recommendations, and best available practices for excellence in operational execution to achieve optimal long-life zonal isolation for a geothermal well.

You can access this article if you purchase or spend a download.