Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
NARROW
Format
Subjects
Date
Availability
1-3 of 3
Keywords: scratch test
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Publisher: Society of Petroleum Engineers (SPE)
Paper presented at the Abu Dhabi International Petroleum Exhibition & Conference, November 11–14, 2019
Paper Number: SPE-197681-MS
... applied in oil and gas sector are cement crushing and acoustic velocities measurements. Both techniques have some limitations and additional techniques are warranted. Scratch test technique is commonly used for characterization of mechanical properties of metals, coatings and other materials. Advances in...
Abstract
The mechanical properties are determined to measure the sustainability and long-lasting behavior of cement slurry under wellbore conditions. Different measurement methods were adopted in the past to study the mechanical behavior of a cement slurry. The most commonly used methods applied in oil and gas sector are cement crushing and acoustic velocities measurements. Both techniques have some limitations and additional techniques are warranted. Scratch test technique is commonly used for characterization of mechanical properties of metals, coatings and other materials. Advances in scratch testing of materials has resulted in its application to cohesive material such as rocks and cement. Recently, scratch test has been successfully applied for the strength evaluation of oil well cement. In this paper, we present the results of scratch tests carried out on oil well cement using type G cement and the specimens modified using nanoclay as an additive. The compressive strength test results from scratch test was compared to the macro level testing of cement cores loaded in compression up to failure. The dynamic elastic parameters of cement mix, elastic modulus and Poisson's ratio, were also determined using the scratch test. The scratch test based strength measurement technique will serve as a very handy tool for drilling and geomechanics engineers to study the mechanical properties of the cement slurry aged under different wellbore conditions with high level of certainty.
Proceedings Papers
Publisher: Society of Petroleum Engineers (SPE)
Paper presented at the Abu Dhabi International Petroleum Exhibition & Conference, November 7–10, 2016
Paper Number: SPE-182994-MS
... calibrate empirical corrections of sonic logs for geomechanical modeling in offset wells. log analysis Reservoir Characterization plug sample Upstream Oil & Gas natural fracture wireline sonic log geomechanical modeling well logging scratch test sonic velocity reservoir geomechanics...
Abstract
This paper focuses on a tight carbonate reservoir in a giant field in Abu Dhabi by identifying shortcomings in conventional modeling strategies for geomechanics and demonstrating the benefits of continuous core data to build more reliable 1-D Mechanical Earth Models (MEM). A 1-D MEM was built from the sonic wireline log, which shows significant difference with a profile of ultrasonic P-wave velocity (Vp) measured on cores. However, results of rock mechanical tests (RMT) on plug samples (including ultrasonic Vp measurements at different stress conditions, and stress-strain curves from triaxial tests) are consistent with the core-based Vp profile. We investigate the impact of stresses, resolution and fluid saturation on sonic velocities to reveal the possible shortcomings of sonic wireline logs as an input for geomechanical models and the greater relevance of using core based ultrasonic velocities measured on dry cores for the upscaling of static elastic moduli. Finally we propose an empirical relation to correct sonic wireline logs for geomechanical modeling in offset wells. The following conclusions can be drawn from this study: The core based Vp profile, which is highly consistent with the RMT results, ultimately leads to opposed trends in the in-situ horizontal stresses predictions compared to those of a 1-D MEM based on the non-calibrated wireline sonic log. Only unrealistic reservoir stress conditions could reconcile ultrasonic Vp measured on plugs at different stress states with wireline sonic velocities; Using a low resolution Vp profile at reservoir stress conditions (combining Vp from plug samples and core based continuous Vp profile), we show that differences in stress only partially explain the discrepancy between velocities measured on plugs and wireline sonic velocities. Although a conventional Gassman fluid correction could explain the remaining differences between core measurements and the wireline sonic, its practical application would require the detailed knowledge of the rock mineralogy and of the saturation along the well. Conversely, a profile of the bulk modulus of the rock mineral fraction can be derived from the sonic log and the ultrasonic P-wave velocities measured on dry cores corrected for stresses effects. Evidences in the drilling data suggest that the discrepancies between the core based sonic velocities and the wireline sonic could be due to natural fractures in the borehole vicinity. An empirical relationship involving wireline logs only was established to correct the sonic wireline log to enhance the reliability of geomechanical models for offset wells. These findings have important implications for the practical applications of 1-D MEM, such as the design of hydraulic fractures. Quality control of the sonic logs with extensive data acquired on dry cores reduces the uncertainty when upscaling static elastic properties. Continuous velocity profiles acquired on dry cores are therefore highly valuable to calibrate empirical corrections of sonic logs for geomechanical modeling in offset wells.
Proceedings Papers
Publisher: Society of Petroleum Engineers (SPE)
Paper presented at the Abu Dhabi International Petroleum Exhibition and Conference, November 9–12, 2015
Paper Number: SPE-177412-MS
... characterization of these tight carbonate reservoirs. With this case study we illustrate: How the combination of the continuous profiles of rock strength UCS (Uniaxial compressive strength) and P-wave velocity measured directly on dry cores with the scratch tests contributes to the identification of different...
Abstract
This paper is focused on the integration of two laboratory centimeter-resolution logs of mechanical properties (strength and compressional elastic-wave velocity Vp) into an enhanced core analysis workflow for the geomechanical characterization of unconventional reservoirs in a giant field in Abu Dhabi, where fracking is the cornerstone for producing the unconventional oil. The design and placement of hydraulic fratures rely strongly on the a-priori knowledge of the stress profile and brittleness index, which were estimated via a mechanical earth model constructed from wireline logs and correlations based on US shales analogues. With most of the stratigraphic column in the Abu Dhabi field composed of carbonates, the calibration of the mechanical earth models was found critical as the US shales based correlations would otherwise not have been suitable to the geomechanical characterization of these tight carbonate reservoirs. With this case study we illustrate: How the combination of the continuous profiles of rock strength UCS (Uniaxial compressive strength) and P-wave velocity measured directly on dry cores with the scratch tests contributes to the identification of different Geomechanical Facies, How the mapping of several Geomechanical Facies enables the building of a simple yet robust relationship between the UCS measured directly on cores and properties such as the total porosity and acoustic velocities of sonic waves, obtained from wireline logs, and How the centimeter-resolution profiles of strength and elastic wave velocities measured on dry cores enable the proper upscaling of geomechanical properties measured on plug samples to the entire cored section and the computation of a horizontal stress and brittleness profiles derived from unbiased geomechanical properties. From this case study follows a general discussion on the relevance of wireline sonic logs relative to centimetric resolution data (scratch profiles or plug measurement) acquired on dry cores for the geomechanical characterization of reservoirs. We conclude that measurements on dry cores enable the more robust calibration of mechanical earth model and in turn better description of the reservoir mechanical response. The upscaled profiles of horizontal stress and brittleness index derived from dry core measurements would ultimately lead to an alternative strategy for the design and placement of hydraulic fractures along producing wells.