One of the most important aspects of any dynamic model is relative permeability. To unlock the potential of large relative permeability data bases, the proposed workflow integrates data analysis, machine learning, and artificial intelligence (AI). The workflow allows for the automated generation of a clean database and a digital twin of relative permeability data. The workflow employs artificial intelligence to identify analogue data from nearby fields by extending the rock typing scheme across multiple fields for the same formation.

We created a fully integrated and intelligent tool for extracting SCAL data from laboratory reports, then processing and modeling the data using AI and automation. After the endpoints and Corey coefficients have been extracted, the quality of the relative permeability samples is checked using an automated history match and simulation of core flood experiments. An AI model that has been trained is used to identify analogues for various rock types from other fields that produce from the same formations. Finally, based on the output of the AI model, the relative permeabilities are calculated using data from the same and analog fields. The workflow solution offers a solid and well-integrated methodology for creating a clean database for relative permeability. The workflow made it possible to create a digital twin of the relative permeability data using the Corey and LET methods in a systematic manner. The simulation runs were designed so that the pressure measurements are history matched with the adjustment and refinement of the relative permeability curve.

The AI workflow enabled us to realize the full potential of the massive database of relative permeability samples from various fields. To ensure utilization in the dynamic model, high, mid, and low cases were created in a robust manner. The workflow solution employs artificial intelligence models to identify rock typing analogues from the same formation across multiple fields. The AI-generated analogues, combined with a robust workflow for quickly QC’ing the relative permeability data, allow for the creation of a fully integrated relative permeability database. The proposed solution is agile and scalable, and it can adapt to any data and be applied to any field.

You can access this article if you purchase or spend a download.