Carbonate reservoir is one of the most complex and important reservoirs in the world. It was confirmed that the slip-strike fault played a crucial role in the fault-dominated carbonate reservoir in Tarim basin. It is challenging to evaluate this kind of reservoir using the open-hole log or seismic data. Identifying and characterizing the fault-dominated carbonate reservoir were the objectives of this case study.

High-definition borehole resistivity image and dipole sonic logs were run in several wells in the research area. It was revealed the detail features of the fault-dominated carbonate reservoir, such as natural fractures, faults or breccias. Compared with the typical geological model of strike-slip faults and outcrop features, the characteristics of the breccia zone and the fracture zone in the strike-slip fault system were summarized from the borehole image interpretation. A unique workflow was innovated with the integration of image and sonic data. Breccias and fractures were observed in the borehole image; and reflections or attenuations in Stoneley waveforms can provide indicating flag for permeable zones. Integrated with the other related geological data like mud logging or cores, the best pay zones in the fault-dominated carbonate reservoir were located.

The characteristics of the strike-slip fault was revealed with the integration of the full-bore formation microimager and dipole shear sonic imager data. The fault core was a typical breccia zone with strong dissolution, which showed good potential in permeability, but it was found that some fault cores were filled with siliceous rock or intrusive rock. The features of the fillings in the fault zone were described based on the image and sonic data. The side cores or geochemical spectroscopy logs data helped to determine the mineralogy of the fillings. The fracture zones had clear responses in the image and sonic data too. The un-filled or half-filled breccia zone were the best zones in the fault-dominated carbonated reservoir. The details of the fault-dominated carbonate reservoir could be used in the future three-dimensional geological modelling.

You can access this article if you purchase or spend a download.