Abstract

Estimating the lateral heterogeneity of geochemical properties of organic rich mudrocks is important for unconventional resource plays. Mature regions can rely on abundant well data to build empirical relationships and on traditional geostatistical methods to estimate properties between wells. However, well penetration in emerging plays are sparse and so these methods will not yield good results. In this case, quantitative seismic interpretation (QSI) might be helpful in estimating the desired properties. In this study, we use QSI based on a rock physics template in estimating the uncertainty of the geochemical properties of organic mudrocks of the Shublik Formation, North Slope, Alaska. A rock physics template incorporating lithology, pore fraction, kerogen fraction, and thermal maturity is constructed and validated using well data. The template clearly shows that the inversion problem is non-unique. Inverted impedances cubes are estimated from three seismic angle gathers (near with angles between 0° and 15°, mid with angle gathers between 15° and 30°, and far with angle gathers between 30° and 45°). The inversion is done using a model-based implementation with an initial earth model derived from the seismic velocity model used in the processing phase. By combining the rock physics template and the results of seismic inversion, multiple realizations of total organic content (TOC), matrix porosity, and brittleness index are generated. These parameters can be used for sweet spot detection. Lithological results can also be used as an input for basin and petroleum system modeling.

You can access this article if you purchase or spend a download.