Directional drilling from artificial islands has become a common offshore practice in the United Arab Emirates, looking to minimize footprint while optimizing cost to reach maximum number of targets from a single location. This drilling practice brings some challenges such as torque and drag limitations, which is vital in order to safely reach wells total depth in well profiles with a high departure. The purpose of this paper is to discuss in detail the successful implementation of torque reduction techniques, focused on case histories from an artificial offshore island in the United Arab Emirates.

During the planning phase, Drilling Engineers estimate expected torque and drag for the different sections based on modeling and historical data, this process is key to assess the limitations and initiate the process of evaluating the different torque and drag reduction techniques to be implemented based on the application. The case histories presented in this paper show the successful implementation of proven torque and drag management techniques, such as; well profile optimization, torque reduction subs, deployment of lubricated mud, use of real-time directional data to minimize hole tortuosity, and deployment of Rotary Steerable Systems from top to bottom for improved hole quality.

There are different factors considered in the planning phase that make torque and drag management crucial, but drill pipes torque limitation was the main challenge to overcome in order to reach planned total depth in the case histories discussed in this paper. Wells trajectory and BHA optimization played an important role during the execution phase, as well as the deployment of lubricated mud and torque reduction subs which in conjunction provided an overall surface torque reduction of up to 28%.

The implementation of different torque and drag reduction methods are illustrated with the modeling results and actual drilling data collected during the drilling of these wells. Information and data discussed in this paper can serve as documentation to aid in the planning phase for wells with similar challenges.

You can access this article if you purchase or spend a download.