Abstract

The paper discusses conceptualization, design and implementation of the first ever inflow tracer technology application in UAE carried out in an Abu Dhabi offshore field. Working in offshore environment has challenges related to operations, cost, resource requirements and HSE that requires innovative and cost-effective solutions to improve efficiency. In recent years, controlled release smart tracers have carved out a niche as a proven solution for extended life fluid flow monitoring, thus allowing the engineers and geoscientists to better understand fluid inflow patterns in a well leading to informed decisions on reservoir management and production optimization. Smart tracers have the capability to detect, quantify and monitor phase breakthroughs and understand subsequent influx behavior in the well.

Being a pioneer project, critical focus was placed on design, execution, and cost optimization. Smart tracer technology was chosen over conventional production logging as it provided production profile monitoring over time compared to single time measurement when using production logging, substantially lower operating cost as well as no production intervention.

A flowback calculation was used inputting static and dynamic reservoir data to understand the flow dynamics that the tracers would encounter. Reservoir permeability profiles, image logs and hole rugosity were utilized to identify potential areas of influx along the wellbore and strategically place specially designed smart oil and water tracers along the ~3300 feet long lateral. Strictly adhering to local environmental regulations, a thorough offshore job hazard analysis was carried out and a risk matrix was framed. A specialized first of a kind closed loop customized sampling procedure was invented to de-risk a hydrogen sulfide (H2S) hazard present during sampling operations.

The paper describes the initial results for the first well in the campaign. Sampling strategy consisted of two phases: high-frequency immediately after well commissioning followed by steady state sampling. Samples were collected at the wellhead and analyzed for tracer breakthroughs. Results showed a good calibration with conventional production logging, confirmed well clean-up and yielded crucial information on zonal flow contribution. Utilizing a local cost model, smart tracer technology was found to offer typical cost savings in the order of US$10 million for a ten well program over five years as compared to conventional production logging.

The paper offers insights into the first application of controlled release tracers in offshore Abu Dhabi highlighting the best practices in project design, techno-economics, hazard analysis and operational excellence. The success of the project is the first major step towards embracing this advanced technology for reservoir monitoring and surveillance. This opens opportunities for similar applications elsewhere with significant potential to incentivize life-cycle cost of reservoir management and improve hydrocarbon recovery.

You do not currently have access to this content.