Integration of well and reservoir surveillance techniques: production measurements, reservoir fluid characterization, pressure transient analysis, production logging, relative permeability, and fractional flow are critical in understanding well and reservoir performance for an adequate well and field management specially in a high cost interventions environment.

Well productivity deterioration for a specific well was identified based on production testing and well performance nodal analysis (NA). The productivity deterioration was then confirmed by means of pressure transient analysis (PTA). Standard diagnostic derivative analyses suggested that permeability decrease was the main source of performance detriment due to an apparent transmissibility reduction of 60%. Since water breakthrough took place before productivity impairment was acknowledged, the immediate reaction was to establish the hypothesis that effective permeability reduction due to relative permeability effects was the main reason for the impairment. A multilayer (ML) PTA type curve model together with fractional flow analysis did not support the relative permeability premise as the primary cause, leaving the potential for severe plugging of the reservoir rock as the predominant hypothesis.

A production logging tool (PLT) was run confirming that about 60% of the completed interval was not producing at the expected levels. It was possible to separate the relative permeability effects from the plugging effects using the integrated technique described above. Relative permeability effects contributed to production impairment with an equivalent effective thickness of 14% and plugging effects impacted an equivalent effective thickness of 46%. A coiled tubing (CT) mud acid treatment was performed recovering approximately 65% of the transmissibility lost and decreasing formation skin from 16 to 9. This intervention delivered an instantaneous oil production benefit of approximately 7,000 STBOD. This analysis approach has been recommended to determine potential benefit of future intervention candidates.

This paper presents an innovative approach to consider fractional flow as part of pressure transient analysis interpretation. This level of integration is not a common practice because PTA theory was developed for single phase and most of the commercial software products do not consider multiphase interpretations in analytical PTA. These limitations leave out the actual effect of relative permeability in the estimated transmissibility values.

You can access this article if you purchase or spend a download.