Abstract
The objective of this paper is focused on presenting and highlighting the results of the first successful reservoir fluid characterization and sampling attempt in offshore Abu Dhabi and the added values to the assets operating in the highly heterogeneous Jurassic carbonate reservoirs with unknown formation water salinity values.
The original formation water has a unique high salinity that got mixed overtime with the fresher injection water, so that the open hole log interpretation using Archie water saturation model becomes highly uncertain. Exaggerated oil saturations could be computed within the water zones around the oil-water contact. In addition to measuring the fluid mobility, the formation testers are being run to confirm the fluid type present in the reservoir by using pressure gradient plot or by fluid identification and sampling stations. The increasing cost and rig time optimization demands inspired the team to utilize the emerging formation sampling and testing while drilling at the first time in offshore Abu Dhabi to replace the conventional wireline/ drill pipe conveyed formation testers. This application proved to be an added value to gather the required reservoir data in a mature challenging field reducing the operational time, cost and associated risks.
A water injection well is drilled across a highly heterogeneous, Jurassic carbonate reservoir offshore Abu Dhabi. A deviated pilot hole was drilled for formation evaluation and reservoir fluid assessment, and the plan was to continue with a horizontal drain into one of the sub-reservoirs (swept area) if confirmed water bearing. The logging while drilling formation sampling and pressure testing tool was run combined with the conventional open hole logs to minimize the formation exposure time, real time down-hole fluid analysis started very shortly after drilling to the bottom of the target reservoir, based on the rush open hole log interpretation. Different sensors, with different physics (namely; fluid viscosity, density, sound speed, optical refractive index, temperature, fluid mobility and compressibility) were used to characterize the fluid during the pump-out stations. Due to the minimized mud filtrate invasion effects, this operational sequence allowed the gathering of conclusive formation fluid samples with less pumping time and volume. This paper shows the operational planning, design and execution outlines, discusses the benefits of acquiring clean formation samples right after drilling compared to those acquired with the conventional conveyance techniques, and indicates the drawbacks and the limitations of this technology together with any window of improvement.