Abstract

The Bolontiku field is located offshore on the continental shelf of the Gulf of Mexico, adjacent to the coast of Tabasco state. This field is composed of dolomitized carbonates of the Upper Jurassic Kimmeridgian formations, which yields 39° API hydrocarbons. Exploitation has dropped the bottomhole pressures from 8,159 psi to 5,600 psi and has created an average operating drilling window of 0.07 g/cm3. Such a narrow operating window increases the technical difficulty for continued development in this mature field using conventional drilling techniques. The complexity of effectively controlling the wellbore pressure has resulted in an endless cycle of fluid loss to formation, kicks, and well control events that translate into non-productive time (NPT), which increased operating time and costs, potentially leading to well abandonment.

A managed pressure drilling (MPD) technique allows for effective control of the pressure profile throughout the wellbore, identifying the bottomhole pressure (BHP) limits and applying appropriate backpressure accordingly. Owing to its efficiency, this technique has evolved from an innovative technology to become a required application to mitigate the inherent wellbore pressure problems associated with conventional drilling. Therefore, as MPD evolves, different approaches for well control evolve for kick events.

This paper describes a well-control application simultaneous to the drilling operation using MPD with a closed-loop pressurized control system. This paper reviews a case history of two wells that were drilled with MPD and compares results against three wells that were conventionally drilled in the Bolontiku field. MPD and simultaneous well control allowed for drilling the Bolontiku 37 well, which consisted of compartmentalized pressure that historically lead to fluid losses and water influxes. Therefore, it was possible to drill through zones that before were not technically possible.

You can access this article if you purchase or spend a download.