Today, geological and hydrodynamic models are widely used for efficient development and monitoring of oil and gas fields. These models are designed to handle a wide range of tasks. Their reliability directly affects the quality of results and any uncertainties should, therefore, be minimised. The use of additional techniques can enhance the reliability and predictive ability of the models and minimise risks. This paper describes how integrating accurate description of flow geometry with reservoir properties and reservoir models to achieve this objective and, to generate a more reliable picture of the reservoir performance. The study included running HPT-PLT-SNL high precision logging tools, and covered a pilot area with five wells in a Cretaceous carbonate reservoir. The wells were completed in the lower and tighter Sub-reservoirs units F1 and F2 and the objective of this pilot is to identify the flow geometry in wells’ neighborhood, particularly identify channeling, fracture flows or other types of communication. The objective of the associated simulations and study is to correlate the acquired and interpreted data with those suggested by simulations and come up with consistent description of reservoir flow geometry within the pilot pattern.

The most challenging point of this flooding campaign is the complexity of the reservoir in this area. The flooding pilot sets the targets for tight Sub-reservoir carbonates Unit F1 and Unit F2. It's important to know if the flow ensues exactly within these units and does not communicate with other reservoirs with better permeability.

You can access this article if you purchase or spend a download.