Abstract
The UAE field has many thin multilayered carbonate reservoirs. Production from thse thin reservoirs are primarily supported by water injection. Reservoir properties, such as permeability, pore pressure, and water saturation, vary significantly both across the field geographically and within the different layers.
Recently a study has been done to drill and maximize reservoir contact via ERD wells. To reduce costs and improve recovery, further development of the plan is to use wells drilled with throws greater than 15,000 ft and measured depths greater than 20,000 ft with some wells exceeding 35,000 ft. Long horizontals provide many benefits including enhanced access to offshore reserves, optimized productivity, reduced capital expenditure, and a minimized environmental impact
With these benefits come challenges, accessibility for intervention operations being the most prevalent. Many factors affect the accessibility and intervention capabilities in ERD wells. Completion ID restrictions play a critical role in the equipment availability and selection. Once equipment is selected the leading principles used for improved access in ERD applications are:
Increasing pipe bending stiffness to postpone helical buckling
Reducing Normal Force between the CT wellbore
Reducing Friction Coefficient
Adding Axial Forces
ERD applications and accessibility for interventions have been an ongoing challenge on how to properly model and predict the reach of CT in varying environments. The two pilot wells covered in this paper allowed for an array of information to be collected as the trajectories were very similar but the wells themselves were very unique. One well was a producer while the other was an injector. One well was completed with 13% Chromium and the other with conventional tubing.
In this paper we will cover the above topics in more detail to clearly outline the challenges of ERD operations and the methods to overcome them. It will be clearly outline how these methods were used on two ERD pilot wells in UAE with the supporting actual operational data. These wells and lessons learned will pave the way for future ERD operations planned in both offshore and island based offshore UAE pilot projects.