Abstract
Interference testing, although primitive in terms of its introduction and idea to the petroleum industry, still stands to this day as one of the most cost effective and efficient ways of confirming communication and evaluating reservoir properties between wells. Similarly, a pressure build-up is one of the most accurate ways of estimating dynamic reservoir parameters surrounding the well, providing that the shut-in of the well is allowable. On the other hand, a drawdown test is not usually recommended due to the instability of the flow rate, and hence, the uncertainty in the parameter estimation when analyzing the transient of the pressure drawdown. In this project, due to production constraints a drawdown test was run for the active horizontal well as a substitute to the pressure build-up. It was therefore decided to couple the drawdown test with an interference test so as highlight the subsurface uncertainties. In order to achieve these objectives, careful design and operational coordination between the different asset teams and contractors is crucial to obtain interpretable and useful data.
Water production was observed in some of the nearby wells, and therefore communication between the horizontal well and the surrounding wells needed to be verified. The main objective of this project was to evaluate the reservoir parameters and connectivity surrounding the important horizontal well. In this test, the horizontal well was the active well in a five well interference test. The results of the test indicated different pressure behaviors seen from the observation wells corresponding to the pulse created by the horizontal well. Communication was established in some of the wells, whereas, faults were also verified in the surrounding regions. In addition, the drawdown analysis of the horizontal well showed all the flow regimes that relate to a horizontal wells’ signature as well as boundary behavior which coincide with the interference test results. The results of the drawdown analysis indicate the possibility and accuracy of conducting a pressure transient analysis using this method without being constrained with production objectives, and hence not shutting the well in.