Abstract
Two new records exist in one of current world's largest oil increment field development projects in Saudi Arabia. The records set while achieving a well's intervention objectives include; 1. Attaining the deepest coiled tubing (CT) reach for rigless well intervention at 29,897 ft (9.11 km) measured depth in an extended reach open hole horizontal power injector well using a CT tractor and; 2. The first application of real time logging enabled through a wired motor head assembly via the tractor. The intervention objectives were to acid stimulate an open hole completed relatively deep in the reservoir with total depth of 29,897 feet and open hole length of 6,697 feet utilizing 2′ CT with open hole tractor, to perform injectivity / falloff test, and to conduct real time logging for evaluating the reservoir's injectivity profile.
The paper examines several challenges that engineers and operators encountered during intervention in this well. A partially sealing high viscosity tar layer exists between the overlaying oil column and underlying aquifer. Operationally, the challenge was to overcome obstructions arising from tar accumulation during the well intervention. This challenge was overcome by the use of a solvent and the well was successfully acidized with the aid of the CT-tractor. The other concern was the tractor integrity while large amount of acid is pumped and the extended exposure time of tractor to acid. The tractor successfully handled huge amounts of corrosive fluids in a sour environment while providing the required pulling force to reach the total depth of the well to set the intervention record for tractor reach without adverse effects on the integrity of its O-rings, seals, and mechanical parts. In addition to organic deposits, azimuth changes in the well added to well entry challenges as a result of changes in hole inclination, doglegs, and azimuth. The application of real time informed decisions was critical in overcoming all the challenges, optimizing stimulation design, and yielding a notable and consistent injectivity increase with evidence of extended life and a true reflection of deep penetration into the damage zone. The successful re-entry will benefit industry operators confronting similar intervention challenges.