In 1993, Richard D'Souza (Fellow), the principal author and his co-authors presented a landmark paper reviewing the Semisubmersible Floating Production System (FPS) technology at the SNAME centennial meeting in New York. (D'Souza et al., 1993a). The paper captured the twenty year progression of the FPS beginning with the Argyll field in the UK Sector of the North Sea in 80 meters of water that was converted from a semisubmersible Mobile Offshore Drilling Unit (MODU) and began producing in 1975. During this period about twenty five FPSs were installed, primarily in the North Sea and Brazil. Most were converted from semisubmersible MODUs. The deepest was in 625 m, the largest displacing 45,000 mt and the maximum oil rate was 70,000 bopd.

Over forty FPSs have been installed since then, most of which are purpose built platforms. The technology has expanded to a maximum water depth of 2400 m, displacements exceeding 150,000 mt and production rates of 300,000 boepd. The inherent versatility and flexibility of the FPS to adapt to a wide range of water depths, payloads, metocean conditions and future expansion, has resulted in the FPS superseding the Tension Leg Platform (TLP) and the Spar platform as the most widely used floating production platform after the Floating Production Storage and Offloading (FPSO) platform. Its field development applications range from marginal reservoirs to giant deepwater oil and gas fields across the globe.

This paper, authored by Richard D'Souza with a new team of co-authors, is a sequel to the 1993 paper and is intended as a historical and technical archive of the evolution of the FPS technology in the ensuing twenty five years. It highlights the importance of the Naval Architect and Ocean Engineer whose role has evolved from a peripheral to a major player in the design, fabrication and installation of the FPS. This paper has two objectives. One is to inform Operators and Contractors engaged in developing deepwater fields by providing a historical overview of lessons learned and technology evolution of the FPS. The other is to inspire graduate and post graduate Naval Architects and Ocean Engineers to consider a career in the offshore industry where they will have an impactful role in shaping the future of deepwater floating production platforms.

This content is only available via PDF.
You can access this article if you purchase or spend a download.