As natural gas is becoming an important energy source, a large fleet is needed to transport it in liquefied form across the oceans in specially designed LNG carriers from mainly the Middle East towards the Far East. During the overall design process of such a vessel the shape of the hull form and its propulsors play an important role from a hydrodynamic point of view. This paper describes the design of a twin-gondola LNG carrier for Navantia. The twingondola aft body has proven to be an adequate design concept, but due to the complexity of the flow around the aft body the design should be carried out with great care. Computational Fluid Dynamics (CFD) tools are extremely valuable in the hydrodynamic optimization process of the hull. In this design both potential flow codes and viscous flow codes have been used to obtain the optimum hull form. With the results of the PARNASSOS viscous flow calculations it was possible to make decisions with regard to the horizontal angle and the inclination of the gondolas, and the slope of the buttocks in the area between the gondolas. Special attention has been paid to avoid flow separation around the aft body. The gondolas have been oriented in such a way that maximum efficiency is achieved. The performance of the resulting design has been verified by model tests in MARIN’s Deep Water Towing Tank. Given the very promising results of this new generation of LNG carriers, achieving besides the excellent propulsive properties also a higher payload target, the yard became more competitive and is expecting quite some orders for this particular ship type.

This content is only available via PDF.
You can access this article if you purchase or spend a download.