The purpose of this investigation was to determine the effect of pitch gyradius on added resistance of yacht hulls. Tank testing of a model yacht in head seas was performed in the Webb Robinson Model Basin. The model was tested in regular waves at two speeds and five variations of gyradius. The model was also evaluated in irregular seas of the Pierson-Moskowitz spectrum at various speeds with two gyradii. Response Amplitude Operators were developed from the regular wave data and comparisons made. The irregular wave data were analyzed for the effect of speed on the difference in added resistance between the maximum and minimum gyradius settings.

Several conclusions were arrived at after analyzing the data. The Response Amplitude Operaters shift as the gyradius changes. In regular waves, at low frequencies of encounter, a lower, gyradius resulted in less added frequencies of encounter in regular waves, this trend reverses itself and the higher gyradii result in reduced added resistance. However, at higher frequencies of encounter in regular waves, this trend reverses, reverses itself in reduced added resistance. The peaks of the RAO curves shift to higher frequencies at higher gyradii. It was also concluded that at the higher speed, Froude Number of 0.3, the added resistance was lower relative to the still-water resistance for each gyradius tested. The irregular wave testing revealed the effect of the lower frequencies dominating the irregular wave spectrum. The minimum gyradius, in irregular seas showed less added resistance than the maximum gyradius. In addition, the irregular wave testing verified, the reduction of added resistance, relative to still-water resistance, at increasing speeds for both the minimum and maximum gyradii.

This content is only available via PDF.
You can access this article if you purchase or spend a download.