Nanoparticles have improved a surfactant's ability to create long-lasting foam. Recent studies have widely recommended the use of silica nanoparticles to enhance foam stability. This paper presents an experimental investigation of a new and highly effective alpha olefin sulfonate (AOS)–multiwalled carbon nanotube (MWCNT) system for mobility control during gas enhanced oil recovery (EOR) operations.

The new AOS–MWCNT system was evaluated for its foam stability at 150°F using a high-pressure view cell. The MWCNT was obtained as solid particles of aspect ratio up to 100 and silica nanoparticles of median size of 118 nm. The foam system was optimized for its maximum half-life by varying the concentration of the AOS and the nanotube from 0.2 to 1% and 250 to 1,000 ppm, respectively. Compatibility testing with salts was done as well. Coreflood experiments with 1.5-in.-diameter, 6-in.-long Berea sandstone cores were run to calculate the mobility reduction factor at 150°F. Nitrogen foam was injected into the core at 80% foam quality in the tertiary recovery mode, and the pressure drop across the core was measured. The formation brine had a salinity of 5 wt% sodium chloride (NaCl), and the foaming solutions were prepared with 2 wt% NaCl.

The optimal concentrations of the AOS solution and the nanotubes for maximum foam stability were determined to be 0.5% and 500 ppm, respectively. The optimized AOS–MWCNT system yielded 60% greater nitrogen foam half-life (32 minutes) than an optimized AOS–silica system at 150°F. The foam half-life of a stand-alone 0.5% AOS solution was 7 minutes. In the presence of crude oil, the foam half-life decreased for all the tested systems. Coreflood experiments at 150°F showed a significant increase in the mobility reduction factor when the new AOS–MWCNT system was used as the foamer instead of stand-alone AOS or AOS–silica system. The new foaming system was stable through the duration of the experiment, yielding foam in the effluent samples. There was no formation damage observed. Salt tolerance for the MWCNT nanofluid was higher than the silica nanofluid.

Foam needs to be stable for long periods of time to ensure effective mobility control during gas injection for EOR. This paper investigates a new highly effective AOS-multiwalled carbon nanotube system that outperforms the AOS–silica foaming systems in terms of foam stability and mobility control at 150°F.

You can access this article if you purchase or spend a download.