Summary

This paper investigates the effect of hydrolyzed polyacrylamide (HPAM) polymer concentration on retention in porous media by use of both static and dynamic measurements. Consistent results by use of these two methods show that different polymer-retention behaviors exist in dilute, semidilute, and concentrated regions. In both the dilute and concentrated regions, polymer retention has little dependence on concentration. In contrast, in the semidilute region, polymer retention is concentration dependent. If a porous medium is first contacted sufficiently with dilute polymer solution to satisfy the retention, no significant additional retention occurs during exposure to higher HPAM concentrations. On the basis of the experimental results, a concentration-related retention mechanism is proposed that considers the orientation of the adsorbed polymer molecules and the interaction between molecular coils in solution. By use of this model, we explain why polymer retention does not show much dependence on concentration in the dilute and concentrated regimes. Further, in the semidilute region, we explain how moderate coil interactions lead to mixed adsorbed-polymer orientation and magnitude on rock surfaces, and retention becomes concentration dependent. In field applications of polymer and chemical floods, reduced polymer retention may be achieved by first injecting a low-concentration polymer bank.

You can access this article if you purchase or spend a download.