Water influx is an important factor influencing production of gas reservoirs with an active aquifer. However, aquifer properties such as size, porosity, and permeability are typically uncertain and make predictions of field performance challenging. The observed pressure decline is inherently nonunique with respect to water influx, and large uncertainties in the actual reservoir state are common. Time-lapse (4D) gravimetry, which is a direct measure of a subsurface mass redistribution, has the potential to provide valuable information in this context.

Recent improvements in instrumentation and data-acquisition and -processing procedures have made time-lapse gravimetry a mature monitoring technique, both for land and offshore applications. However, despite an increasing number of gas fields in which gravimetric monitoring has been applied, little has been published on the added value of gravity data in a broader context of modern reservoir management on the basis of the closed-loop concept. The way in which gravity data can contribute to improved reservoir characterization, production-forecast accuracy, and hydrocarbon-reserves estimation is still to be addressed in many respects.

In this paper, we investigate the added value of gravimetric observations for gas-field-production monitoring and aquifer-support estimation. We perform a numerical study with a realistic 3D gas field model that contains a large and complex aquifer system. The aquifer support and other reservoir parameters (i.e., porosity, permeability, reservoir top and bottom horizons) are estimated simultaneously using the ensemble smoother (ES). We consider three cases in which gravity only is assimilated, pressure only is assimilated, and gravity and pressure data are assimilated jointly. We show that a combined estimation of the aquifer support with the permeability field, porosity field, and reservoir structure is a very challenging and nonunique history-matching problem, in which gravity certainly has an added value. Pressure data alone may not discriminate between different reservoir scenarios. Combining pressure and gravity data may help to reduce the nonuniqueness problem and provide not only an improved gas- and water-production forecast and gas-in-place evaluation, but also a more-accurate reservoir-state description.

You can access this article if you purchase or spend a download.