The predominant way of modeling faults in industry-standard flow simulators is to introduce so-called transmissibility multipliers in the underlying two-point discretization. Although this approach provides adequate accuracy in many practical cases, two-point discretizations are only consistent for K-orthogonal grids and may introduce significant discretization errors for grids that severely depart from being K-orthogonal. Such grid-distortion errors can be avoided by lateral or vertical stair-stepping of deviated faults at the expense of errors in the geometrical fault description. In other words, modelers have the choice of either making (geometrical) errors by adapting faults to a grid that is almost K-orthogonal, or introducing discretization errors because of the lack of K-orthogonality if the grid is adapted to deviated faults.

We propose a method for accurate description of faults in solvers based on a hybridized mixed or mimetic discretization, which also includes the MPFA-O method. The key idea is to represent faults as internal boundaries and calculate fault transmissibilities directly instead of using multipliers to modify grid-dependent transmissibilities. The resulting method is geology-driven and consistent for cells with planar surfaces and thereby avoids the grid errors inherent in the two-point method. We also propose a method to translate fault transmissibility multipliers into fault transmissibilities. This makes our method readily applicable to reservoir models that contain fault multipliers.

You can access this article if you purchase or spend a download.