Although typically large uncertainties are associated with reservoir structure, the reservoir geometry is usually fixed to a single interpretation in history-matching workflows, and focus is on the estimation of geological properties such as facies location, porosity, and permeability fields. Structural uncertainties can have significant effects on the bulk reservoir volume, well planning, and predictions of future production.

In this paper, we consider an integrated reservoir-characterization workflow for structural-uncertainty assessment and continuous updating of the structural reservoir model by assimilation of production data. We address some of the challenges linked to structural-surface updating with the ensemble Kalman filter (EnKF).

An ensemble of reservoir models, expressing explicitly the uncertainty resulting from seismic interpretation and time-to-depth conversion, is created. The top and bottom reservoir-horizon uncertainties are considered as a parameter for assisted history matching and are updated by sequential assimilation of production data using the EnKF. To avoid modifications in the grid architecture and thus to ensure a fixed dimension of the state vector, an elastic-grid approach is proposed. The geometry of a base-case simulation grid is deformed to match the realizations of the top and bottom reservoir horizons.

The method is applied to a synthetic example, and promising results are obtained. The result is an ensemble of history-matched structural models with reduced and quantified uncertainty. The updated ensemble of structures provides a more reliable characterization of the reservoir architecture and a better estimate of the field oil in place.

You do not currently have access to this content.