In this paper we propose a new workflow to perform Petrophysical Joint Inversion (PJI) of surface to surface seismic and Controlled Source ElectroMagnetic (CSEM) data, to recover reservoir properties (clay volume, porosity and saturation). Seismic and CSEM measurements provide independent physical measurements of subsurface that complement each other. In the case of well-logs, the basis of the PJI training dataset, taking advantage of such complementarity is straightforward. Indeed, elastic and electric measurements of earth properties sense the same earth volume at much the same scale. When applying the training dataset to the surface data derived geophysical attributes, the order of magnitude gap in between the scale at which those elastic and electric attributes represent the earth undermines dramatically PJI validity. Various CSEM inversion constraining methods (regularization breaks, prejudicing, use of an a priori model etc) help to reconcile seismic and CSEM resolution, but they are usually proven to be insufficient or inaccurate. In addition to these methods, we suggest adding a further downscaling step, so the recovered electric attribute resolution can be adequate with respect to the seismic one, hence fit for purpose. Such downscaling is designed to be consistent in electrical attribute space via transverse resistance within a rockphysics framework. The workflow will be demonstrated on a case study.

This content is only available via PDF.
You can access this article if you purchase or spend a download.