Summary

In some areas, seismic data can exhibit the effects of strong azimuthal anisotropy (AA). One of the major causes of AA can be anomalous horizontal stress regimes, which can be modeled as horizontally transverse isotropy (HTI). The Stybarrow field, located offshore NW Australia in the Carnarvon sedimentary basin, is one such area, where strong horizontal stress conditions have been present throughout the basin’s tectonic history. We find evidence for AA in repeat 3D seismic data acquired at two separate azimuths over the Stybarrow field. AA is observed in amplitude versus offset (AVO) reflection amplitude difference maps and cross plots, and is consistent with dipole shear logs and borehole breakout data in the area. We model azimuthal AVO responses using Ruger’s HTI AVO equation, using the anisotropy parameters derived from dipole shear logs, and compare the results with AVO data from the two 3D seismic surveys. Certain fault blocks (but not all) exhibit the same AAVO trend in the seismic data as those modeled from log data, consistent with a stress-induced HTI anisotropic model interpretation.

This content is only available via PDF.
You can access this article if you purchase or spend a download.