Surface-consistent residual statics correction for land seismic data does not account for the source - receiver offset. Consequently, it requires normal moveout (NMO) corrected gathers to bring raypaths close to the normal incidence. When the NMO velocity is inaccurate or unavailable, the estimated statics suffer. Therefore, multiple passes of NMO velocity picking and residual statics estimation become essential, which are efforts and time consuming. To avoid this, we utilize a rank-based solution that is capable of estimating non-surface consistent residual statics. The method is based on the rank property of frequency slices in the midpoint-offset domain, where ideal seismic data is of low-rank nature, while data with residual statics exhibits higher rank. Accordingly, we estimate the statics that lead to the desired low-rank signal via means of low-rank approximation and cross-correlation in an iterative and multi-rank-scale approach. Since we estimate non surface-consistent statics by accounting for the offset of each trace, it is no longer required to have NMO corrected gathers. Consequently, the method does not require windowing over a noise-free section containing primaries or windowing to avoid the NMO stretch effect, which are required by conventional residual statics correction. Numerical results on simulated and field data suggest that the method has the potential of replacing existing residual statics correction techniques.
Skip Nav Destination
SEG/AAPG/SEPM First International Meeting for Applied Geoscience & Energy
September 26–October 1, 2021
Denver, Colorado, USA and online
Residual statics correction without NMO — A rank-based approach Available to Purchase
Ali M. Alfaraj;
Ali M. Alfaraj
Delft University of Technology
Search for other works by this author on:
Eric Verschuur;
Eric Verschuur
Delft University of Technology
Search for other works by this author on:
Felix J. Herrmann
Felix J. Herrmann
Georgia Institute of Technology
Search for other works by this author on:
Paper presented at the SEG/AAPG/SEPM First International Meeting for Applied Geoscience & Energy, Denver, Colorado, USA and online, September 2021.
Paper Number:
SEG-2021-3583455
Published:
November 15 2021
Citation
Alfaraj, Ali M., Verschuur, Eric, and Felix J. Herrmann. "Residual statics correction without NMO — A rank-based approach." Paper presented at the SEG/AAPG/SEPM First International Meeting for Applied Geoscience & Energy, Denver, Colorado, USA and online, September 2021. doi: https://doi.org/10.1190/segam2021-3583455.1
Download citation file:
Sign in
Don't already have an account? Register
Personal Account
You could not be signed in. Please check your username and password and try again.
Could not validate captcha. Please try again.
Pay-Per-View Access
$9.00
Advertisement
17
Views
Advertisement
Suggested Reading
Advertisement