Recently developed physics-informed neural network (PINN) for solving for the scattered wavefield in the Helmholtz equation showed large potential in seismic modeling because of its flexibility, low memory requirement, and no limitations on the shape of the solution space. However, the predicted solutions were somewhat smooth and the convergence of the training was slow. Thus, we propose a modified PINN using sinusoidal activation functions and positional encoding, aiming to accelerate the convergence and fit better. We transform the scalar input coordinate parameters using positional encoding into high-dimensional embedded vectors and train a fullyconnected neural network to predict the real and imaginary parts of the scattered waveifeld. Numerical results show that, compared to the commonly used PINN, the proposed modified PINN using positional encoding exhibits notable superiority in terms of convergence and accuracy.
Skip Nav Destination
SEG/AAPG/SEPM First International Meeting for Applied Geoscience & Energy
September 26–October 1, 2021
Denver, Colorado, USA and online
A modified physics-informed neural network with positional encoding
Xinquan Huang;
Xinquan Huang
King Abdullah University of Science and Technology
Search for other works by this author on:
Tariq Alkhalifah;
Tariq Alkhalifah
King Abdullah University of Science and Technology
Search for other works by this author on:
Chao Song
Chao Song
King Abdullah University of Science and Technology
Search for other works by this author on:
Paper presented at the SEG/AAPG/SEPM First International Meeting for Applied Geoscience & Energy, Denver, Colorado, USA and online, September 2021.
Paper Number:
SEG-2021-3584127
Published:
October 30 2021
Citation
Huang, Xinquan, Alkhalifah, Tariq, and Chao Song. "A modified physics-informed neural network with positional encoding." Paper presented at the SEG/AAPG/SEPM First International Meeting for Applied Geoscience & Energy, Denver, Colorado, USA and online, September 2021. doi: https://doi.org/10.1190/segam2021-3584127.1
Download citation file:
Sign in
Don't already have an account? Register
Personal Account
You could not be signed in. Please check your username and password and try again.
Could not validate captcha. Please try again.
Pay-Per-View Access
$9.00
Advertisement
23
Views
Advertisement
Advertisement