Summary

Carbon dioxide (CO2) enhanced oil recovery (EOR) has long been practiced in the US as an efficient mean for enhancing oil production. Many of the US CO2-EOR developments have been designed horizontally. This is because of a viscous-dominated CO2 flow regime that is prevalent in these developments driven by thin and low-permeability reservoirs. Reservoirs and fluid properties are different in the North Sea. Pays are usually thicker with better petrophysical properties. Lighter oils can also be found in North Sea reservoirs. This suggests that a dissimilar flow regime might prevail CO2 displacements in the North Sea developments, which could favor a dissimilar CO2-EOR process design. This study thus compares CO2 flow regimes between several North Sea and US reservoirs. We use scaling analysis to characterize and compare CO2 flow regimes between these two classes of reservoirs. Scaling analysis characterizes CO2 displacement in each reservoir system using three dimensionless numbers: gravity, effective aspect ratio, and mobility ratio. Displacement experiments conducted in stochastically generated permeability fields, under exactly matched magnitudes of the derived dimensionless numbers, reveal the prevailing CO2 flow regime in each reservoir system. Results of scaling analysis indicate that CO2 flooding in the North Sea reservoirs can be generally characterized with a larger gravity number, smaller effective aspect ratio, and smaller mobility ratio than the average US CO2 flooded reservoirs. Flow regime analysis indicates that unlike the majority of the US CO2 flooded reservoirs, CO2 flow regimes tend to be more gravity-dominated in the North Sea class of reservoirs. CO2 flow regimes in the North Sea systems are expected to suffer from a higher degree of instability because of thicker North Sea pays, which limit effective crossflow. Understanding the differences and characteristics of CO2 flow regimes in the North Sea prospects can help operators design their CO2 flooding more efficiently, which could increase the recovery factor (RF) as well as address CO2 storage requirements, a necessary consideration for CO2-EOR deployment in the North Sea.

You can access this article if you purchase or spend a download.