A new genetic algorithm (GA)-based correlation has been developed to estimate the change in MMP when CO2 is diluted with other gases, termed "impure CO2" in the context of this paper. The advantage of this correlation over others is that it can be used for gas mixtures with higher N2 concentrations (tested up to 20 mol%) and with non-CO2 component concentrations up to 78 mol% (e.g., H2S, N2, SOx, O2, and C1−C4) with a higher accuracy. Equally important, it could be a useful screening tool when experimental data are not available and when developing an optimal and economical laboratory program to estimate the MMP.

In developing this correlation, the GA software developed in our earlier work (Emera and Sarma 2005a) has been modified to account for various components in the injected-gas stream. The correlation estimates the change in MMP as a function of injected-gas solvency in the oil. The solvency, in turn, is related to critical properties of the injected gas (critical temperature and pressure). In addition, pure CO2/oil MMP is used as an input in this correlation. The correlation has been validated successfully against published experimental data and several correlations in the literature. It yielded a better match with an average error of 4.7% and a standard deviation of 6.3%, followed by the Sebastian et al. (1985) correlation with a 13.1% average error and a 22.0% standard deviation and the Alston et al. (1985) correlation with a 14.1% average error and a 43.2% standard deviation.

You can access this article if you purchase or spend a download.