Analytical methods for analyzing and forecasting production from multifractured horizontal wells completed in unconventional reservoirs are in their infancy. Among the difficulties in modeling such systems is the incorporation of fracture-network complexity as a result of the hydraulic-fracturing process. Along with a primary propped-hydraulic-fracture network, a secondary fracture network, which may or may not contain proppant, may be activated during the stimulation process, creating a “branched-fracture” network. These secondary fractures can be the result of reactivation of healed natural fractures, for example.

In the current work, we develop a fully analytical enhanced-fracture-region (EFR) model for analyzing and forecasting multifractured horizontal wells with complex fracture geometry that is more-general, -rigorous, and -flexible than those previously developed. Specifically, our new model allows nonsymmetric placement of a well within its area of drainage, to reflect unequal horizontal-lateral spacing; this is a very real scenario observed in the field, particularly for the external laterals on a pad. The solutions also can be reduced to be applicable for homogeneous systems without branch fractures. In addition to the general EFR solution, we have provided local solutions that can be used to analyze individual flow regimes in sequence. We provide practical examples of the application (and sometimes misapplication) of local solutions by use of simulated and field cases. One important observation is that a negative intercept obtained from a straight line drawn through data on a square-root-of-time plot (commonly used to analyze transient linear flow) may indicate EFR behavior, but this straight line should not be interpreted as linear flow because it represents transitional flow from one linear-flow period to another.

Our general EFR solution therefore provides a powerful tool to improve both forecasting and flow-regime interpretation for hydraulic-fracture/reservoir characterization.

You can access this article if you purchase or spend a download.