Summary

The 3D post-stack seismic attributes provide an intuitive and effective way of using seismic volumes for reservoir characterization and development, and further identification of exploration targets. Some of the seismic attributes can aid in the precise prediction of the geometry and heterogeneity of subsurface geological settings. These also can provide useful information on petrophysical and lithological properties when combined with well-log information. There exist numerous seismic attributes that provide a unique interpretation on some aspects of subsurface geology. Of these, the proper demarcation of structural features— such as location and edges of faults and salt domes, and their throw and extent—always has been of primary concern. In this paper, we propose new multiattribute seismic algorithms by using fractal dimension and 2D/3D continuous wavelet transform (CWT). The use of higher-dimensional wavelets incorporates information from the ensemble of traces and can correlate information between neighboring traces in seismic data. The spectral decomposition that is based on the CWT aids in resolving various features of geological interest at a particular scale or frequency, which, when rendered with fractal attribute, demarcates the boundaries between those. We apply these two algorithms separately to a seismic amplitude volume and co-render output volumes together with some weights to yield a final attribute volume incorporating information from the aforementioned algorithms. We demonstrate the efficacy of these two algorithms in terms of the resolution and proper demarcation of various geological structures on real seismic data. The application of these algorithms results in better illumination and proper demarcation of various geological features such as salt domes, channels, and faults, and it illustrates how these simple tools can help to extract detailed information from seismic data.

You do not currently have access to this content.