For hydrophobically associative polymers, incorporating a small fraction of hydrophobic monomer into a hydrolyzed polyacrylamide (HPAM) polymer can promote intermolecular associations and thereby enhance viscosities and resistance factors. In this paper, we investigate the behavior of a new associative polymer in porous media. The tetra-polymer has low hydrophobic-monomer content and a molecular weight (Mw) of 12–17 million g/mol. Total anionic content is 15–25 mol%, including a few percent of a sulfonic monomer. This polymer is compared with a conventional HPAM with 18–20 million g/mol Mw and 35–40% anionic content. Rheological properties (viscosity vs. concentration; and shear rate and elastic and loss moduli vs. frequency) were similar for the two polymers [in a 2.52% total dissolved solids (TDS) brine at 25 °C]. For both polymers in cores with permeabilities from 300 to 13,000 md, no face plugging or internal-filter-cake formation was observed, and resistance factors correlated well using the capillary-bundle parameter. For the HPAM polymer in these cores, low-flux resistance factors were consistent with low-shear-rate viscosities. In contrast, over the same permeability range, the associative polymer provided low-flux resistance factors that were two to three times the values expected from viscosities. Moderate shear degradation did not eliminate this effect—nor did flow through a few feet of porous rock. Propagation experiments in long cores (up to 157 cm) suggest that the unexpectedly high resistance factors could propagate deep into a reservoir—thereby providing enhanced displacement compared with conventional HPAM polymers. Compared with HPAM, the new polymer shows a significantly higher level of shear thinning at low fluxes and a lower degree of shear thickening at high fluxes.

You can access this article if you purchase or spend a download.