In preparation for the SPE Applied Technology Workshop (ATW) held in Brugge in June 2008, a unique benchmark project was organized to test the combined use of waterflooding-optimization and history-matching methods in a closed-loop workflow. The benchmark was organized in the form of an interactive competition during the months preceding the ATW. The goal set for the exercise was to create a set of history-matched reservoir models and then to find an optimal waterflooding strategy for an oil field containing 20 producers and 10 injectors that can each be controlled by three inflow-control valves (ICVs). A synthetic data set was made available to the participants by TNO, consisting of well-log data, the structure of the reservoir, 10 years of production data, inverted time-lapse seismic data, and other information necessary for the exercise. The parameters to be estimated during the history match were permeability, porosity, and net-to gross- (NTG) thickness ratio. The optimized production strategy was tested on a synthetic truth model developed by TNO, which was also used to generate the production data and inverted time-lapse seismic. Because of time and practical constraints, a full closed-loop exercise was not possible; however, the participants could obtain the response to their production strategy after 10 years, update their models, and resubmit a revised production strategy for the final 10 years of production. In total, nine groups participated in the exercise. The spread of the net present value (NPV) obtained by the different participants is on the order of 10%. The highest result that was obtained is only 3% below the optimized case determined for the known truth field. Although not an objective of this exercise, it was shown that the increase in NPV as a result of having three control intervals per well instead of one was considerable (approximately 20%). The results also showed that the NPV achieved with the flooding strategy that was updated after additional production data became available was consistently higher than before the data became available.

You can access this article if you purchase or spend a download.