Summary

Hydrates are ice-like solids composed of a water-based lattice “encaging” gas molecules. They form under conditions of high pressure and low temperature. In the oil and gas industry, where these conditions are easily met, hydrate formation may cause pipe blockages and severe financial implications, making its prevention (and remediation) one of the main flow-assurance concerns. Desired hydrate inhibition may come from electrolytes naturally dissolved in the water that is produced in conjunction with the hydrocarbon stream, or alcohols can be deliberately injected for such a purpose. When trying to predict hydrate conditions in real-world production systems, computer simulation should ideally integrate hydrate and multiphase-flow calculations. Failing to do so [by performing a decoupled analysis with a flow simulator and a separate pressure/volume/temperature (PVT) package for example] may generate misleading results under certain flow conditions. This paper presents an integrated wellbore simulator to deal with this issue. A hydrate model is added to verify hydrate formation for specific pressure, temperature, and composition of each gridblock. Integration with a geochemical package allows consideration of electrolyte inhibition coming from the associated brine. After successfully comparing results with the available simulators and the experimental data, it is demonstrated that when flowing gas/water ratios (GWRs) exceed 105 scf/STB, water condensation throughout the flow may dilute the beneficial effect arising from the brine composition, thus reducing electrolyte inhibition. Conversely, mineral precipitation along the flow path has shown a nearly negligible impact on this effect.

You can access this article if you purchase or spend a download.