Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
NARROW
Format
Subjects
Article Type
Date
Availability
1-3 of 3
Keywords: random forest
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Publisher: Offshore Technology Conference
Paper presented at the Offshore Technology Conference, May 1–4, 2023
Paper Number: OTC-32447-MS
... vary significantly, thus it is of paramount importance to accurately detect lithology changes and formation tops while drilling. In order to do so, geologic data and logs are often utilized by experts and operators to identify lithological variations. Machine learning algorithms and random forest have...
Proceedings Papers
Publisher: Offshore Technology Conference
Paper presented at the Offshore Technology Conference, May 4–7, 2020
Paper Number: OTC-30906-MS
... Clustering Analysis. For electrofacies classification, two supervised machine-learning techniques, K-Nearest Neighbors (KNN) and Random Forests (RF), were adopted to model the resulting electrofacies given the CPI well logging data for a well to predict at other wells that have missing data. These two...
Proceedings Papers
Publisher: Offshore Technology Conference
Paper presented at the Offshore Technology Conference, May 6–9, 2019
Paper Number: OTC-29288-MS
... the planned well trajectory and eliminates excessive doglegs that lead to wellbore deviations. Five different Machine Learning algorithms were implemented to optimize ROP and create a less tortuous borehole. The collected data was cleaned and preprocessed and used to structure and train Random Forest...