In drilling operations, the rheological properties of the drilling fluid (‘mud’) are measured at rigsite at ambient temperature using sensors in real-time. These measurements, however, are required to be reported at the API standard temperature (120/150 oF). As the rheological properties of the drilling fluids vary significantly with temperature, it is essential to calibrate sensor measurements at the ambient temperature to the API standard. Previous attempts in the literature to build data-driven frameworks for predicting drilling fluids behavior demonstrate limited success due to restrained data access, neglect of the physics, and/or use of improper algorithms, such as neural networks which are shown to perform poorly despite their popularity. In this work, we develop a digital twin to calibrate the rigsite rheology measurements for obtaining the API standard properties by exploring the use of a set of promising machine learning algorithms. A dataset composed of various drilling fluids composition with rheological measurements at both rigsite and API conditions is collected. Our results demonstrate that the ensemble algorithm outperform other commonly used methods, such as regularized regression, polynomial regression, and neural networks. The optimized integrative model is deployed on a platform at rig for use at real-time drilling operations.
Skip Nav Destination
Offshore Technology Conference
May 4–7, 2020
Houston, Texas, USA
ISBN:
978-1-61399-707-9
A Digital Twin of Drilling Fluids Rheology for Real-Time Rig Operations
Mehrdad Gharib Shirangi;
Mehrdad Gharib Shirangi
Baker Hughes
Search for other works by this author on:
Paper presented at the Offshore Technology Conference, Houston, Texas, USA, May 2020.
Paper Number:
OTC-30738-MS
Published:
May 04 2020
Citation
Samnejad, Mahshad, Gharib Shirangi, Mehrdad, and Reza Ettehadi. "A Digital Twin of Drilling Fluids Rheology for Real-Time Rig Operations." Paper presented at the Offshore Technology Conference, Houston, Texas, USA, May 2020. doi: https://doi.org/10.4043/30738-MS
Download citation file:
Sign in
Don't already have an account? Register
Personal Account
You could not be signed in. Please check your username and password and try again.
Could not validate captcha. Please try again.
Pay-Per-View Access
$12.00
Advertisement
147
Views
Advertisement
Suggested Reading
Advertisement