This paper describes the potential global scientific value of video and other data collected by Remotely Operated Vehicles (ROVs). ROVs are used worldwide, primarily by the offshore oil and gas industry, to monitor the integrity of subsea infrastructure and, in doing so, collect terabytes of video and in situ physical data from inaccessible regions and poorly understood marine environments. The paper begins by describing how recent ROV surveys for projects in Australia have gained a new dimension by involving marine scientists in their interpretation. A previously unrecognised influence of marine life on oil and gas pipelines was uncovered, triggering new collaborations between industry and marine science.

This new collaboration prompted a team of international engineers and marine scientists to gather together with West Australian based members of the oil and gas sector and ROV operators, to examine the global scientific value of ROV-collected data. If made available for research, these data have immense value for science to quantify the marine ecology and assist good stewardship of this environment by industry. It was found that most ROV operations are conducted by industry in a way that fulfils immediate industry requirements but which can confound scientific interpretation of the data. For example, there is variation in video resolution, ROV speed, distance above substrate and time (e.g. both seasonal and time of day), and these variations can limit the quantitative conclusions that can be drawn about marine ecology. We examined potential cost-effective, simple enhancements to standard ROV hardware and operational procedures that will increase the value of future industrial ROV operational data, without disrupting the primary focus of these operations.

The ecological value of existing ROV data represents an immense and under-utilized resource with worldwide coverage. We describe how ROVs can unravel the mysteries of our oceans, yield scientific discoveries, and provide examples of how these data can allow quantification of the ecological value of subsea infrastructure. By using these data, we can greatly improve our knowledge of marine biodiversity on and around offshore infrastructure and their environmental impact on marine ecosystems, both of which are particularly important in the consideration and selection of decommissioning strategies. Predicting the environmental consequences of removing or retaining subsea structures after decommissioning relies on an understanding of the ecological communities that have developed in association with these structures during their operational lives. Making industrial ROV data available for scientific research, and collating it in the future using modified protocols, would provide a very positive contribution to both science and industry, allowing the environmental impacts of subsea infrastructure to be quantified. It will also allow industry to contribute to a broader scientific understanding of our oceans, given the location of ROVs in areas that can rarely be accessed by independent researchers. This would provide novel and valuable information about under-researched and little known regions of the world's oceans.

This content is only available via PDF.
You can access this article if you purchase or spend a download.