Up to present, the annual iceberg contact frequency for short subsea flowline systems designed for offshore Newfoundland and Labrador has been less than the target reliability level. For longer flowlines, iceberg contact rates will be higher and the consequence of such contacts must be considered. It is possible, for example, that the pipe gets pushed into the seabed with acceptable damage to the pipe and/or localized ice failure takes place. If it can be demonstrated that a pipe could survive some impacts, it might be possible to avoid costly protection strategies such as trenching or rock berms. This paper describes physical tests conducted as part of a preliminary investigation to assess the consequence of a free-floating iceberg interacting with a flowline placed on the seafloor. Two scenarios were considered in this testing program. The first focused on understanding the local iceberg failure processes and the second evaluated the transverse flowline motion when a free-floating keel snags a flexible pipe laid on the seabed.

This content is only available via PDF.
You can access this article if you purchase or spend a download.