Remote Sensing Imagery and the derived ancillary products improved the efficiency and safety of upstream oil and gas operations on the North Slope of Alaska. These Arctic regions are remote, very difficult to access in general and sometimes only seasonably accessible. Our prudent and responsible Arctic Operations require regional-reconnaissance exploration, diligent monitoring of environment such as current state of vegetation, temporal changes of terrain, water drainage system and lakes. Finally, we also need very detailed logistical-planning of field operations. Remote sensing imagery and its derived ancillary products demonstrably improved all these aspects of our Arctic Operations.

For Arctic Operations, remote sensing data consisted of optical satellite and aerial imagery at various spectral and spatial resolutions, high resolution LIDAR data for digital elevation and digital surface models and synthetic aperture radar imagery (SAR). A combination of in-house and commercial software was used to ingest and process these data. The optical imagery was processed and enhanced using various spectral combinations and high pass filtering to generate the highest possible spatial-resolution for each sensor. Classic neural networks analysis was used to classify the optical imagery for vegetation. The SAR imagery was calibrated (for all polarizations) and geometrically corrected to remove layover effects. The processed optical and SAR imagery, LIDAR and ancillary products were co-registered and imported into a GIS system for final analysis and applications.

The optical imagery provided information about surface feature such as lake outlines, general drainage, active channels in Colville River, general lake ice conditions, classification of vegetation types etc. The LIDAR data were used to generate slope maps (for arctic vehicles), general topographic conditions and field operations. The SAR imagery was used to monitor surface conditions when optical imagery was not available during the Arctic night conditions. SAR imagery was also used to calculate the ice thickness proxy maps for eventual field operations. All of these products contributed directly to our environmental baseline studies, improved our field operation efficiency and general safety of our Arctic Operations.

For a practicing engineer (individual or team) The remote sensing data and derived products for Arctic Operations were made available via GIS system. This allowed easy integration with other data layers as well as a common background for all different disciplines to monitor progress and to contribute their learnings and ideas to the entire team.

This content is only available via PDF.
You can access this article if you purchase or spend a download.