Abstract

The current practice for protecting wellheads and associated subsea facilities from icebergs on the Grand Banks is an Excavated Drill Centre (EDC), which is simply an excavation in the seabed in which wellheads and associated facilities are placed. Free-floating icebergs simply drift over an EDC, with the exception of those that roll as they pass over an EDC and increase draft sufficiently to enter. The risk from gouging icebergs entering an EDC is a function of the clearance between the surrounding undisturbed seabed and the top of the facilities in the EDC, and the distribution of gouging iceberg keel penetration depths. A field program conducted in Bonavista Bay in 2015 was used to estimate iceberg rolling rates, and an analysis of high resolution iceberg profile data collected in 2012 was used to determine the associated distribution of iceberg draft changes that occur due to rolling, and thus the rate at which iceberg keels penetrate an EDC due to rolling events. Modeled iceberg grounding rates and iceberg scour data from the Jeanne d’Arc were used to estimate the rate at which gouging icebergs enter EDCs. Iceberg gouge data from the Jeanne d’Arc and a dynamic time-step iceberg simulation using the 2012 iceberg profile data were used to determine the impact rate for facilities in the EDC as a function of the distance between the midline and the top of the facilities (clearance). The analysis addresses some of the conservatisms in the current approach, allowing for reduced EDC excavation depths.

This content is only available via PDF.
You can access this article if you purchase or spend a download.