The paper explores the use of a GPU-Event-Mechanics (GEM) simulation to assess local ice loads on a vessel operating in pack ice. The methodology uses an event mechanics concept implemented using massively parallel programming on a GPU enabled workstation. The simulation domain contains hundreds of discrete and interacting ice floes. A simple vessel is modeled as it navigates through the domain. Each ship-ice collision is modeled, as is every ice-ice contact. Each ship-ice collision event is logged, along with all relevant ice and ship data. Thousands of collisions are logged as the vessel transits many tens of kilometers of ice pack. The GEM methodology allows the simulations to be performed much faster than real time. The resulting impact load statistics are qualitatively evaluated and compared to published field data. The analysis provides insight into the nature of loads in pack ice. The work is part of a large research project at Memorial University called STePS2 (Sustainable Technology for Polar Ships and Structures).

This content is only available via PDF.
You can access this article if you purchase or spend a download.