Abstract

A two-year-long field study was conducted by ConocoPhillips Alaska, Inc. andPND Engineers, Inc., at Kuparuk in Alaska's arctic North Slope region. Thestudy verified that pipe piles can be directly driven into predrilled pilotholes in frozen ground, without requiring thermal modification of thepermafrost. The traditional " drill-and-slurry" method of permafrost pileinstallation involves hanging piles in an oversize hole and backfilling theannulus with a sand/water slurry. Vibratory driven pile installation isconsiderably more efficient with large benefits in installation time, expenses, and safety. Both methods require an adequate adfreeze bond for pileperformance. The objective of this testing program was to determine whetherdespite great benefits in installation efficiency the vibratory driven pilewould perform adequately. Twelve 12.75-inch-diameter steel pipe piles wereinstalled in permafrost in the Alaskan arctic; eight piles were installed inice-rich sandy silt and four piles were installed in a frozen gravel soil. Piles were loaded in tension for six different durations ranging from five daysto six months at loads varying from 35 kips to 145 kips. At the completion oflong-term testing, the test piles were unloaded, rested, and then loaded tofailure to characterize the adfreeze short-term strength. Pile load anddisplacement were continuously recorded with electronic displacement and loadtransducers. Subsurface soil temperatures were also monitored. Collected datawas used to characterize long- and short-term pile velocity as a function ofload and adfreeze temperature. Experimental results were compared to currenttheoretical and empirical performance.

This content is only available via PDF.
You can access this article if you purchase or spend a download.