Corrosion of zirconium-based new cladding material exposed to reactor coolant water during nuclear reactor operations could lead to hydrogen absorption into the material and subsequently precipitation as hydrides during extended storage. Depending on size, distribution, and orientation, these hydrides may lead to premature fracture, as a result of hydride embrittlement or delayed hydride cracking. The work described in this paper used cathodic charging followed by annealing to prepare hydrided Zircaloy-2 three-point-bent beam specimens. The hydrided specimens were studied using a loading stage inside a scanning electron microscope chamber to investigate the critical stress levels required to cause hydride reorientation and to characterize the fracture resistance after hydride reorientation. The results showed that the absorbed hydrogen content in the bulk material can be adjusted by controlling the cathodic charging conditions and annealing temperature. The reoriented hydrides reduced the fracture resistance of the Zircaloy-2 material. The resulting stress intensity factor-resistance curves for Zircaloy-2 with reoriented hydrides are lower than those of Zircaloy-2 without hydrides.
Skip Nav Destination
Hydrides Formation From Fuel Cladding Corrosion and Influence of Hydrides on Mechanical Behavior
Kwai Chan
Kwai Chan
Southwest Research Institute®
Search for other works by this author on:
Paper presented at the CORROSION 2013, Orlando, Florida, March 2013.
Paper Number:
NACE-2013-2257
Published:
March 17 2013
Citation
He, Xihua, Pan, Yiming, and Kwai Chan. "Hydrides Formation From Fuel Cladding Corrosion and Influence of Hydrides on Mechanical Behavior." Paper presented at the CORROSION 2013, Orlando, Florida, March 2013.
Download citation file:
Sign in
Don't already have an account? Register
Personal Account
You could not be signed in. Please check your username and password and try again.
Could not validate captcha. Please try again.
Pay-Per-View Access
$20.00
Advertisement
1
Views
Advertisement
Suggested Reading
Advertisement