Velocity Prediction Programs (VPPs) are commonly used to help predict and compare the performance of different sail designs. A VPP requires an aerodynamic input force matrix which can be computationally expensive to calculate, limiting its application in industrial sail design projects. The use of multi-fidelity kriging surrogate models has previously been presented by the authors to reduce this cost, with high-fidelity data for a new sail being modelled and the low-fidelity data provided by data from existing, but different, sail designs. The difference in fidelity is not due to the simulation method used to obtain the data, but instead how similar the sail’s geometry is to the new sail design. An important consideration for the construction of these models is the choice of low-fidelity data points, which provide information about the trend of the model curve between the high-fidelity data. A method is required to select the best existing sail design to use for the low-fidelity data when constructing a multi-fidelity model. The suitability of an existing sail design as a low fidelity model could be evaluated based on the similarity of its geometric parameters with the new sail. It is shown here that for upwind jib sails, the similarity of the broadseam between the two sails best indicates the ability of a design to be used as low-fidelity data for a lift coefficient surrogate model. The lift coefficient surrogate model error predicted by the regression is shown to be close to 1% of the lift coefficient surrogate error for most points. Larger discrepancies are observed for a drag coefficient surrogate error regression.

This content is only available via PDF.