Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
NARROW
Peer Reviewed
Format
Subjects
Journal
Date
Availability
1-2 of 2
Joe Fernandez
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Ship Research
Journal of Ship Research 23 (04): 272–283.
Paper Number: SNAME-JSR-1979-23-4-272
Published: 01 December 1979
Abstract
An extended design procedure for fully cavitating hydrofoils is based upon a linearized inverse theory of two-dimensional cavity flows at arbitrary cavitation number. The cavity surfaces are assumed to originate at the leading and trailing edges of the wetted surface. This paper completes the basic theory and gives detailed examples obtained from the resulting parametric design technique. In this procedure, one specifies the design lift coefficient, the cavitation number and the upper cavity thickness at two points along the profile chord. A prescribed pressure distribution shape is also selected. These quantities determine the profile design, which consists of the upper cavity and wetted surface contours, the design angle of attack, the cavity length, the drag coefficient, the moment coefficient and the lift-to-drag ratio. The method also includes off-design calculations in accordance with the direct theory of cavity flows, which determines the flow states for which interference can occur between the upper surface of the cavity and the upper nonwetted surface of the profile. The hydrodynamic performance of specific "point designs" is also given by these direct calculations. The chief new feature of the generalized design procedure is that it gives a designer the ability to prescribe two points on the cavity surface instead of one as heretofore. Although certain constraints must be observed by the designer when specifying these two values of cavity thickness, the third procedure is found to be more general and more flexible than design procedures studied previously. The necessary constraints are incorporated in the computer logic for the method. The fact that linearized theory is used tends to limit the applicability of the method to conceptual design and feasibility studies. The computer program for the procedure has been found to be economical and well suited for its intended purpose.
Journal Articles
Journal:
Journal of Ship Research
Journal of Ship Research 23 (04): 260–271.
Paper Number: SNAME-JSR-1979-23-4-260
Published: 01 December 1979
Abstract
A new design theory for fully cavitating hydrofoils is based upon a linearized inverse theory of two-dimensional cavity flows at arbitrary cavitation number. The cavity surfaces are assumed to originate at the leading and trailing edges of the wetted surface. This paper reviews and completes the basic theory, which leads to a parametric design technique. In the resulting design procedure, one specifies the design lift coefficient, the cavitation number and the upper cavity thickness at two points along the profile chord. A prescribed pressure distribution shape is also selected. These quantities determine the profilelesgn, which consists of the upper cavity and wetted surface contours, the design angle of attack, the cavity length, the drag coefficient, the moment coefficient and the lift-to-drag ratio. The chief new feature of the third design procedure is that the designer can now prescribe two points on the cavity surface instead of one as heretofore. Although the designer must observe certain constraints when he specifies these two values of cavity thickness, the new procedure is still found to be more general and more flexible than design procedures studied previously.