Vibratory pressures exerted on cylindrical and flat-plate boundaries due to a model propeller were measured at three advance coefficients. A number of "free-space" measurements also were made. All measurements were made by driving a propeller past fixed pressure gages. This method yielded curves of pressure changes which are entirely free from background noise. The magnitudes of the free-space pressures were found to be larger than one half the corresponding magnitudes measured by gages mounted flush in a large plate at equal clearances from the propeller. By postulating that the finite area of the gage diaphragm produces a partial image of the propeller (and hence a larger pressure than that in free space) an experimental procedure was devised for correcting for this finite-area effect yielding results in good agreement with theory. A theoretical treatment of this effect of finite gage size is given in Appendix 2. The decay of maximum amplitudes of vibrating pressures is shown by means of three-dimensional plots. The pressures were found to become vanishingly small within approximately one propeller diameter fore and aft of the center of the propeller. The comparison with theoretically calculated pressures and forces gives very close agreement for free-space pressures and reasonable agreement for forces on a cylindrical surface. The agreement of both pressures and forces with theory is excellent for operation near the design advance ratio. A strong plea is made for further experiments with ship models in an effort to develop design criteria for practical application.

This content is only available via PDF.
You do not currently have access to this content.