The aim of this paper is to develop an advanced ultimate strength formulation for ship hulls under vertical bending moment. Since the overall failure of a ship hull is normally governed by buckling and plastic collapse of the deck, bottom, and sometimes the side shell stiffened panels, it is of crucial importance to accurately calculate the ultimate strength of stiffened panels in deck, bottom and side shell for more advanced ultimate strength analyses. In this regard, the developed formulation is designed to be more sophisticated than previous simplified theoretical methods for calculating the ultimate strength of stiffened panels under combined axial load, in-plane bending and lateral pressure. Fabrication-related initial imperfections (initial deflections and residual stresses) and potential structural damage related to corrosion, collision, or grounding are included in the panel ultimate strength calculations as parameters of influence. All possible collapse modes involved in collapse of stiffened panels, including overall buckling collapse, column or beam-column type collapse (plate or stiffener induced collapse), tripping of stiffeners and local buckling of stiffener web, are considered. As illustrative examples, the paper investigates and discusses the sensitivity of parameters such as lateral pressure, fabrication-related initial imperfections, corrosion, collision and grounding damage on the ultimate strength of a typical Cape size bulk carrier hull under vertical bending.

This content is only available via PDF.
You do not currently have access to this content.