A ship moving steadily forward in shallow water of constant depth h is usually subject to downward forces and hence squat, which is a potentially dangerous sinkage or increase in draft. Sinkage increases with ship speed, until it reaches a maximum at just below the critical speed Here we use both a linear transcritical shallow-water equation and a fully dispersive finite-depth theory to discuss the flow near that critical speed and to compute the maximum sinkage, trim angle, and stern displacement for some example hulls.

This content is only available via PDF.
You can access this article if you purchase or spend a download.