An extended design procedure for fully cavitating hydrofoils is based upon a linearized inverse theory of two-dimensional cavity flows at arbitrary cavitation number. The cavity surfaces are assumed to originate at the leading and trailing edges of the wetted surface. This paper completes the basic theory and gives detailed examples obtained from the resulting parametric design technique. In this procedure, one specifies the design lift coefficient, the cavitation number and the upper cavity thickness at two points along the profile chord. A prescribed pressure distribution shape is also selected. These quantities determine the profile design, which consists of the upper cavity and wetted surface contours, the design angle of attack, the cavity length, the drag coefficient, the moment coefficient and the lift-to-drag ratio. The method also includes off-design calculations in accordance with the direct theory of cavity flows, which determines the flow states for which interference can occur between the upper surface of the cavity and the upper nonwetted surface of the profile. The hydrodynamic performance of specific "point designs" is also given by these direct calculations. The chief new feature of the generalized design procedure is that it gives a designer the ability to prescribe two points on the cavity surface instead of one as heretofore. Although certain constraints must be observed by the designer when specifying these two values of cavity thickness, the third procedure is found to be more general and more flexible than design procedures studied previously. The necessary constraints are incorporated in the computer logic for the method. The fact that linearized theory is used tends to limit the applicability of the method to conceptual design and feasibility studies. The computer program for the procedure has been found to be economical and well suited for its intended purpose.

This content is only available via PDF.
You can access this article if you purchase or spend a download.